Skip to main content

From Singly to Doubly Linked List

So this goes like quite similar to Singly Linked List. The difference is that , it has not only the link to the successor, but also to its predecessor. Therefor the problems like taking more time to delete from tail or delete from any location is reduced.
Like the earlier case there are two java classes. one for the node and the other for the implementation.

Node class 


1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
public class DoublyLLNode {
    //create variables for info;
    public int info;
    public DoublyLLNode next,prev;  //two nodes to point successor and predecessor
    public DoublyLLNode(int x){     //create the constructor
        this(x,null,null);          //first node
    }
    public DoublyLLNode(int x,DoublyLLNode n,DoublyLLNode p){
        info = x;
        next = n;
        prev = p;
    }
}

So the next will be the implementation. Here I only added the implementations of adding to tail and delete from tail.


1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
public class DoublyLL {
    protected DoublyLLNode head,tail;
    /*********Functions************/
    public boolean isEmpty(){
        return head == null;
    }
    public void InserttoTail(int x){
        if(!isEmpty()){
            tail = new DoublyLLNode(x,head,tail); 
            tail.prev.next = tail;
        }else
            head = tail = new DoublyLLNode(x); // only single node
    }
    public int deleteFromTail(){
        int x = tail.info;
        if(head == tail)
                head = tail = null;
        else{
            tail = tail.prev;
            tail.next = null;
        }
        return x;
    }
    public static void main(String[] args) {
        DoublyLL Llist = new DoublyLL();
        Llist.InserttoTail(23);
        System.out.println("Head : " + Llist.head.info);
        System.out.println("Tail : " + Llist.tail.info);
        Llist.InserttoTail(27);
        System.out.println("Head : " + Llist.head.info);
        System.out.println("Tail : " + Llist.tail.info);
}
}

Popular posts from this blog

Natural Language Processing with Python NLTK part 5 - Chunking and Chinking

Natural Language Processing Using regular expression modifiers we can chunk out the PoS tagged words from the earlier example. The chunking is done with regular expressions defining a chunk rule. The Chinking defines what we need to exclude from the selection. Here are list of modifiers for Python: {1,3} = for digits, u expect 1-3 counts of digits, or "places" + = match 1 or more ? = match 0 or 1 repetitions. * = match 0 or MORE repetitions $ = matches at the end of string ^ = matches start of a string | = matches either/or. Example x|y = will match either x or y [] = range, or "variance" {x} = expect to see this amount of the preceding code. {x,y} = expect to see this x-y amounts of the preceding code source: https://pythonprogramming.net/regular-expressions-regex-tutorial-python-3/ Chunking import nltk from nltk.tokenize import word_tokenize # POS tagging sent = "This will be chunked. This is for Test. World is awesome. Hello world....

Natural Language Processing with Python NLTK part 1 - Tokenizer

Natural Language Processing Starting with the NLP articles first we will try the  tokenizer  in the NLTK package. Tokenizer breaks a paragraph into the relevant sub strings or sentences based on the tokenizer you used. In this I will use the Sent tokenizer, word_tokenizer and TweetTokenizer which has its specific work to do. import nltk from nltk.tokenize import sent_tokenize, word_tokenize, TweetTokenizer para = "Hello there this is the blog about NLP. In this blog I have made some posts. " \ "I can come up with new content." tweet = "#Fun night. :) Feeling crazy #TGIF" # tokenizing the paragraph into sentences and words sent = sent_tokenize(para) word = word_tokenize(para) # printing the output print ( "this paragraph has " + str(len(sent)) + " sentences and " + str(len(word)) + " words" ) # print each sentence k = 1 for i in sent: print ( "sentence ...

Natural Language Processing with Python NLTK part 4 - PoS tagging

Natural Language Processing  PoS tagging or Part of Speech tagging is a commonly used mechanism. This will allow NLTK to tag the words that is in your corpus and give the tags accordingly. There are many tags predefined by the NLTK and here are the list. Number Tag Description 1. CC Coordinating conjunction 2. CD Cardinal number 3. DT Determiner 4. EX Existential  there 5. FW Foreign word 6. IN Preposition or subordinating conjunction 7. JJ Adjective 8. JJR Adjective, comparative 9. JJS Adjective, superlative 10. LS List item marker 11. MD Modal 12. NN Noun, singular or mass 13. NNS Noun, plural 14. NNP Proper noun, singular 15. NNPS Proper noun, plural 16. PDT Predeterminer 17. POS Possessive ending 18. PRP Personal pronoun 19. PRP$ Possessive pronoun 20. RB Adverb 21. RBR Adverb, comparative 22. RBS ...