Skip to main content

Algorithms with Stacks

So thought of training with some stack in the beginning of algorithms. I'm gonna use java for the coding.

So as the word says its a stack, like a stack of plate. what is special about it is how the elements come in and out of it. The first plate to come in is the first plate to get out. we call this Fist In First Out (FIFO). Without further ado lets go straight in to the code.

The first thing I created was the stack. Here in Class StackA I initially defined the array, array size and the top element.


1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
public class StackA {
    private int MaxSize;    // size of the stack
    private int[] arr;   // the stack
    private int top;        // the top element
    
    public StackA(int s){   // constructor initiate stack
        MaxSize = s;        // assign the size
        arr = new int[s];//creating the stack
        top = -1;           // initial top element
    }
    
    public void push(int k){
        arr[++top] = k;     //pre incrementing top, post incrementing will give ArryOutOfBoundException 
    }
    public void pop(){
        System.out.println(arr[top--]);
    }
    
    
    public static void main(String[] args) {
        StackA A = new StackA(4);   //creating object
        A.push(3);                  //pushing 3 to the top
        System.out.println("pop the top element");
        A.pop();                    //pop the top element
       
    }

    }

So this may not be very difficult to understand but I have defined two methods namely pop and push in the code. 

Push is the method that you simply place an element in the top of the satck and pop is the method where you remove the top element in the stack. (Popping it out).


So lets see some other functions later.

Popular posts from this blog

Natural Language Processing with Python NLTK part 5 - Chunking and Chinking

Natural Language Processing Using regular expression modifiers we can chunk out the PoS tagged words from the earlier example. The chunking is done with regular expressions defining a chunk rule. The Chinking defines what we need to exclude from the selection. Here are list of modifiers for Python: {1,3} = for digits, u expect 1-3 counts of digits, or "places" + = match 1 or more ? = match 0 or 1 repetitions. * = match 0 or MORE repetitions $ = matches at the end of string ^ = matches start of a string | = matches either/or. Example x|y = will match either x or y [] = range, or "variance" {x} = expect to see this amount of the preceding code. {x,y} = expect to see this x-y amounts of the preceding code source: https://pythonprogramming.net/regular-expressions-regex-tutorial-python-3/ Chunking import nltk from nltk.tokenize import word_tokenize # POS tagging sent = "This will be chunked. This is for Test. World is awesome. Hello world....

Natural Language Processing with Python NLTK part 1 - Tokenizer

Natural Language Processing Starting with the NLP articles first we will try the  tokenizer  in the NLTK package. Tokenizer breaks a paragraph into the relevant sub strings or sentences based on the tokenizer you used. In this I will use the Sent tokenizer, word_tokenizer and TweetTokenizer which has its specific work to do. import nltk from nltk.tokenize import sent_tokenize, word_tokenize, TweetTokenizer para = "Hello there this is the blog about NLP. In this blog I have made some posts. " \ "I can come up with new content." tweet = "#Fun night. :) Feeling crazy #TGIF" # tokenizing the paragraph into sentences and words sent = sent_tokenize(para) word = word_tokenize(para) # printing the output print ( "this paragraph has " + str(len(sent)) + " sentences and " + str(len(word)) + " words" ) # print each sentence k = 1 for i in sent: print ( "sentence ...

Natural Language Processing with Python NLTK part 6 - Named Entity Recognition

Natural Language Processing - NER Named entities are specific reference to something. As a part of recognizing text NLTK has allowed us to used the named entity recognition and recognize certain types of entities. Those types are as follows NE Type Examples ORGANIZATION Georgia-Pacific Corp. ,  WHO PERSON Eddy Bonte ,  President Obama LOCATION Murray River ,  Mount Everest DATE June ,  2008-06-29 TIME two fifty a m ,  1:30 p.m. MONEY 175 million Canadian Dollars ,  GBP 10.40 PERCENT twenty pct ,  18.75 % FACILITY Washington Monument ,  Stonehenge GPE South East Asia ,  Midlothian Source:  http://www.nltk.org/book/ch07.html Simple example on NER: import nltk from nltk.tokenize import word_tokenize, sent_tokenize para = " America is a country. John is a name. " sent = sent_tokenize(para) for s in sent: word = word_tokenize(s) tag = nltk . pos_tag(word) n...