Skip to main content

Starting With AngularJS

So a per the tutorial said. First installed git. Then cloned to the tutorial repository which was given Phonecat. Then installed nodes.js and finally did a npm install which took me almost 20 min. I wonder why? The npm install did installed the following ;


  • Bower - client-side code package manager
  • Http-Server - simple local static web server
  • Karma - unit test runner
  • Protractor - end to end (E2E) test runner

So I'm all ready to go. 

Popular posts from this blog

Natural Language Processing with Python NLTK part 5 - Chunking and Chinking

Natural Language Processing Using regular expression modifiers we can chunk out the PoS tagged words from the earlier example. The chunking is done with regular expressions defining a chunk rule. The Chinking defines what we need to exclude from the selection. Here are list of modifiers for Python: {1,3} = for digits, u expect 1-3 counts of digits, or "places" + = match 1 or more ? = match 0 or 1 repetitions. * = match 0 or MORE repetitions $ = matches at the end of string ^ = matches start of a string | = matches either/or. Example x|y = will match either x or y [] = range, or "variance" {x} = expect to see this amount of the preceding code. {x,y} = expect to see this x-y amounts of the preceding code source: https://pythonprogramming.net/regular-expressions-regex-tutorial-python-3/ Chunking import nltk from nltk.tokenize import word_tokenize # POS tagging sent = "This will be chunked. This is for Test. World is awesome. Hello world....

Natural Language Processing with Python NLTK part 1 - Tokenizer

Natural Language Processing Starting with the NLP articles first we will try the  tokenizer  in the NLTK package. Tokenizer breaks a paragraph into the relevant sub strings or sentences based on the tokenizer you used. In this I will use the Sent tokenizer, word_tokenizer and TweetTokenizer which has its specific work to do. import nltk from nltk.tokenize import sent_tokenize, word_tokenize, TweetTokenizer para = "Hello there this is the blog about NLP. In this blog I have made some posts. " \ "I can come up with new content." tweet = "#Fun night. :) Feeling crazy #TGIF" # tokenizing the paragraph into sentences and words sent = sent_tokenize(para) word = word_tokenize(para) # printing the output print ( "this paragraph has " + str(len(sent)) + " sentences and " + str(len(word)) + " words" ) # print each sentence k = 1 for i in sent: print ( "sentence ...

Natural Language Processing with Python NLTK part 6 - Named Entity Recognition

Natural Language Processing - NER Named entities are specific reference to something. As a part of recognizing text NLTK has allowed us to used the named entity recognition and recognize certain types of entities. Those types are as follows NE Type Examples ORGANIZATION Georgia-Pacific Corp. ,  WHO PERSON Eddy Bonte ,  President Obama LOCATION Murray River ,  Mount Everest DATE June ,  2008-06-29 TIME two fifty a m ,  1:30 p.m. MONEY 175 million Canadian Dollars ,  GBP 10.40 PERCENT twenty pct ,  18.75 % FACILITY Washington Monument ,  Stonehenge GPE South East Asia ,  Midlothian Source:  http://www.nltk.org/book/ch07.html Simple example on NER: import nltk from nltk.tokenize import word_tokenize, sent_tokenize para = " America is a country. John is a name. " sent = sent_tokenize(para) for s in sent: word = word_tokenize(s) tag = nltk . pos_tag(word) n...